Lower Bounds for Estrada Index

نویسندگان

  • Ivan Gutman
  • Slobodan Simić
چکیده

If G is an (n,m)-graph whose spectrum consists of the numbers λ1, λ2, . . . , λn, then its Estrada index is EE(G) = ∑n i=1 e λi . We establish lower bounds for EE(G) in terms of n and m. Introduction In this paper we are concerned with simple graphs, that have no loops and no multiple or directed edges. Let G be such a graph, and let n and m be the number of its vertices and edges. Then we say that G is an (n,m)-graph. The spectrum of G is the spectrum of its adjacency matrix [1], and consists of the (real) numbers λ1, λ2, . . . , λn. The number n0 of zeros in the spectrum of the graph G is called its nullity. A recently introduced [3, 5] spectrum-based graph invariant is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Albertson energy and Albertson Estrada index of graphs

‎Let $G$ be a graph of order $n$ with vertices labeled as $v_1‎, ‎v_2,dots‎ , ‎v_n$‎. ‎Let $d_i$ be the degree of the vertex $v_i$ for $i = 1‎, ‎2‎, ‎cdots‎ , ‎n$‎. ‎The Albertson matrix of $G$ is the square matrix of order $n$ whose $(i‎, ‎j)$-entry is equal to $|d_i‎ - ‎d_j|$ if $v_i $ is adjacent to $v_j$ and zero‎, ‎otherwise‎. ‎The main purposes of this paper is to introduce the Albertson ...

متن کامل

Ela Lower Bounds for the Estrada Index of Graphs

The Estrada index was used to study the folding degree of proteins and other long-chain molecules [4, 5, 6, 9]. It also has numerous applications in the vast field of complex networks [7, 8, 13, 14, 17]. A number of properties especially lower and upper bounds [3, 10, 11, 12, 15, 16, 18, 19, 20] for the Estrada index are known. In this paper, we establish further lower bounds improving some res...

متن کامل

New Lower Bounds for Estrada Index

Let G be an n-vertex graph. If λ1, λ2, . . . , λn are the adjacency eigenvalues of G, then the Estrada index and the energy of G are defined as EE(G) = ∑n i=1 e λi and E(G) = ∑n i=1 |λi|, respectively. Some new lower bounds for EE(G) are obtained in terms of E(G). We also prove that if G has m edges and t triangles, then EE(G) ≥ √ n2 + 2mn+ 2nt. The new lower bounds improve previous lower bound...

متن کامل

Lower Bounds for the Estrada Index Using Mixing Time and Laplacian Spectrum

The logarithm of the Estrada index has been recently proposed as a spectral measure to characterize the robustness of complex networks. We derive novel analytic lower bounds for the logarithm of the Estrada index based on the Laplacian spectrum and the mixing times of random walks on the network. The main techniques employed are some inequalities, such as the thermodynamic inequality in statist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008